ЭФФЕКТ МЕДА МЕЛИПОН НА ВЫЗЫВАЕМУЮ СЕЛЕНИТОМ КАТАРАКТУ

Патрисиа ВИТ, ВЕНЕСУЭЛА

Patricia VIT

Apiterapia y Vigilancia Ambiental, Departamento Ciencia de los Alimentos, Facultad de Farmacia, Universidad de Los Andes, Mérida, VENEZUELA
Tel.: +58-74-711802, Fax: +58-74-403475, E-mail: vitpat@cantv.net

Аннотация

Melipona favosa favosa известна как производительница меда против катаракты. Катаракта является помутнением хрусталика глаза в результате старческого нарушения питания тканей, диабета, повреждения глаза, эффекта ультрафиолетовых лучей. В нашей работе мы использовали модель с селенитом, чтобы вызвать катаракту у крыс и для тестирования эффекта глазных капель с медом от мелипон. С этой целью лечению подвергнуты 5 групп. В каждой было по 10 крыс 12-дневного возраста. Одна контрольная группа (1) не получила селенита, другая контрольная (2) получила ежедневно одну каплю меда в правом глазе. Три группы инъицированы селенитом натрия (3), контрольная группа катаракты (4) получила капли меда, одновременно с инъицированием (5) капель меда после обнаружения катаракты. За помутнением глаза наблюдали в течение двух недель ежедневно с помощью лампой со щелью. Катаракты градировали для каждого хрусталика. При применении глазных капель с меда не регистрировано их вредного влияния на хрусталик (2). Однако, они не предупредили появления катаракты, как отмечено в группе (4), но у 20% особей группы отмечено более медленное течение болезни (5). Модель с селенитом влияет на метаболизм кальция в хрусталике и вызывает быстрое помутнение. Замедление помутнения в хрусталике правого глаза по сравнению с левым вызвано медом. Необходимо проводить больше исследований для определения механизма, который действовал только в случае 20% особей.

Введение

Пчелы без жала (мелипоны) применены давно народом майя для лечения глазных заболеваний. Эти пчелы принадлежат разряду *Himenopterae*, семейству *Apidae*, но, в отличии от коммерческих пчел рода

Apis, они принадлежат подсемейсиву *Meliponinae* (КАМАРГО и МЕНЕЗЕС ПЕДРО, 1992; КРЕЙН, 1992). Среди существующих 500 видов мелипон, мед *Melipona favosa favosa* обладает популярными свойствами для лечения катаракты при применении в виде капель.

Помутнение хрусталика причинено рядом факторов: диабетом, ультрафиолетовыми лучами, ранениями. Старческая катаракта является проблемой политики охраны здоровья населения. Для ее лечения нет медикаментов. Вопрос межно решать только хирургической имплантацией хрусталика (КАДОР, 1983; ХАРДИНГ, 1992; ВЕСТ и ВАЛМАДРИД, 1995).

Модель катаракты вызываемой селенитом очень быстра и основывается на вызывании помутнений путем введения глазных протеаз, которые нарушают метаболизм кальция (ШЕРЕР с сотр., 1997). Предыдущие исследования имплантаций хрусталиков у овец показали защитный эффект метилированного флавоноида в случае помутнения, вызываемого *in vitro* эфирами кальция (ВИТ и ЯКОБ, 1998). Мед содержит флавоноиды посещаемых пчелами растений (ВИТ и ТОМАС-БАРБЕРАН, 1998), но пока еще не проведено исследований для установления вопроса могут ли они оказать защитный эффект и в случае других типов катаракты.

В настоящей работе мы изучаем эффект топического применения меда от *Melipona favosa favosa* в случае катаракты, вызываемой селенитом.

Материал и методика

Опытные катаракты вызывали инъекциями селенита натрия по технике ШЕРЕРа с сотр. (1987). Для определения эффекта глазных капель меда были использованы 5 групп крыс Вистар 12-дневного возраста (по 10 крыс в каждой). Контрольная группа (1) не получила ни селенита, ни меда. Контрольной группе для меда (2) ежедневно давали капли меда в правом глазе. Трем группам инъицировали селенит натрия. Одна из них была контролем для опытной катаракты (3), другой давали селенит одновременно с каплями меда (4), а последняя получала капли после обнаружения катаракты (5). За помутнением хрусталика наблюдали в течение двух недель.

Применяемый мед от мелипон экстрагирован из маточников и заморожен до использования.

Разработаны диаграммы для определения авансирования катаракты при помощи лампы со щелью, учитывая восемь стадий: 1. Начальные вакуоли. 2. Вакуоли в виде лоскута. 3. Сужения в

шове, вызываемые воспаленными волокнами. 4. Экваториальная наметка. 5. Элипсоидальный отрыв коры. Просвечивающее ядро и суженная кора. 7. Молочно-белое ядро и кора без сужений. 8. Замутненные ядро и кора. Ежедневно наблюдали за глазами.

Результаты и дискуссии

Капли меда от *Melipona favosa favosa* не вызывали изменений хрусталика в контрольной группе для меда (2), наблюдаемых лампой со щелью. Однако, капли меда не предупредили развитие катаракты в группе, в которой одновременно применяли мед с инъекциями селенита (4). Отмечено также опоздание развития катаракты у 20% крыс группы, в случае которой для лечения помутнения селенитом применяли мед (5). Речь идет только о предварительном исследовании, описание которого позволяет лишь думать о продолжении исследований в этом направлении для определения достоверного эффекта меда в случае лечения катаракты. Процент катаракт, представляющих опоздание в развитии очень малый, но, может быть, путем сокращения этиологического агента станет возможным появление более медленной в развитии катаракты, которая была бы более чувствительна к применению меда. Во всяком случае, опоздание помутнения хрусталика правого глаза, леченного медом, сравнительно с левым глазом той же крысы показывает нам, что стоит продолжать исследование.

Было бы хорошо одновременно продолжать исследования для разработки модели *in vivo* и изучения флавоноидов, содержащихся в меду пчел без жала как возможность лечения катаракты каплями меда. Мы располагаем лишь предварительными данными о наличии лутеолина в фенольных вытяжках меда пчел без жала, сравнительно с медом от *Apis mellifera* из Венесуэлы (ВИТ и ТАМАС-БАРБЕРАН, 1998); несомненно, цветочные предпочтения могут генерировать и другие структуральные модифицирования в флавоноидах.

Другой пример изучения агентов против катаракты с помощью модели селенита представлен XИРАОКА и КЛАРКОМ (1995), который состоит в применении подкожного инъицирования агентом за 15 минут до применения селенита натрия. В других предварительных исследованиях не обнаружены защитные эффекты меда от Melipona favosa favosa (КЛАРК, 2000). Во всяком случае, защитный эффект, наблюдаемый в данной работе, оказался возможным, видимо, после момента применения меда. В настоящее время мы увеличиваем число опытных животных для проверения повторения отмеченного эффекта. Непосредственное введение меда в глаза является болезненным процессом из-за высокого содержания кислот, присутствие которых скрывается сладким вкусом от концентрированных сахаров. Следовательно, рекомендуется применение лечения после диагносциро-вания катаракты, а не как превентивный метод.

Выражение благодарности

Данная работа проведена в рамках BIOULA. Благодарим за сотрудничество директора данного учреждения проф. Роса де Хесус. Лампа со щелью приобретена в рамках проекта Welcome Trust, M/96/2571, и вместе с проектом CDCHT-ULA FA-209-97-03-А были предоставлены условия для проведения данной работы. Благодарим также д-ра Лерри Дейвида от Орегонского Университета, Портленд для иллюстрирования техники индуцирования катаракты селенитом, который приглашен Комиссией научных обменов ULA.

ЛИТЕРАТУРА

Camargo J.M.F., Menezes Pedro S.R., Systematics, phylogeny and biogeography of the Meliponinae (Hymenoptera, Apidae): a minireview. *Apidologie*, 23 (1992), 509-522

Clark J.I., Comunicación personal, 2000

Crane E., The past and present status of beekeepeing with stingless bees. Bee World 73 (1992), 29-42

Harding J.J., Pharmacological treatment strategies in age-related cataracts. *Drugs & Aging*. 2 (1992), 287-300

Hiraoka T., Clark J.I., Inhibition of lens opacification during the early stages of cataract formation. *Investigative Ophthalmology & Visual Science*. 36 (1995), 2550-2555

Kador P.F., Overview of the current attempts toward the medical treatment of catarct. Ophthalmology 90 (1983), 352-364

Shearer T.R., David L.L., Anderson R.S., Selenite cataract: A review. Current Eye Research. 6 (1987), 289-300

Shearer T.R., Ma H., Fukiage C., Azuma M., Selenite nuclear cataract: Review of the model. Molecular Vision 3 (1997), 8-16

Vit P., Jacob T., Protective role of tetramethyl luteolin in experimental cataracts. XIXth. International Conference on Polyphenols, Lille, France, September, 1998, pp. 109-110

Vit P., Tomás-Barberán F.A., Flavonoids in Meliponinae honey from Venezuela, related to their botanical, geographical and entomological origin to assess their putative anticataract properties. *Zeitschrift für Lebensmittel- Intersuchung und- Forschung.* 206 (1998), 288-293

West S.K., Valmadrid C.T., Epidemiology of risk factors for age-related cataract. Survey of Ophtalmology. 39 (1995), 323-334